State the third congruence that must be given to prove that $\triangle DEF \cong \triangle MNO$, using the indicated postulate or theorem.

1. Given:
$$\overline{EF} \cong \overline{NO}$$

$$\angle N \cong \angle E$$

2. Given:
$$\overline{EF} \cong \overline{NO}$$

$$\angle N \cong \angle E$$

3. Given: $\angle D \cong \angle M$

 $\angle F \cong \angle O$

Is it possible to prove that the triangles are congruent? If so, state the postulate or theorem you would use. Explain your reasoning.

4.

5.

6.

Write a two-column or a paragraph proof.

7. Given: C is the midpoint of \overline{XY} .

$$\overline{BX} \perp \overline{AC}, \overline{EY} \perp \overline{CD}$$

Prove:
$$\triangle CXB \cong \triangle CYE$$

8. Given: $\overline{AB} \perp \overline{AD}$, $\overline{DE} \perp \overline{AD}$

C is the midpoint of
$$\overline{BE}$$
.

Prove:
$$\triangle ABC \cong \triangle DEC$$

9. Given: $\angle M \cong \angle P$

$$\angle MOQ \cong \angle PNQ$$

$$\overline{MN} \cong \overline{PO}$$

Prove:
$$\triangle MOQ \cong \triangle PNQ$$

10. Given: $\angle EBC \cong \angle ECB, \overline{EB} \cong \overline{EC}$

$$\overline{BE}$$
 bisects $\angle AEC$.

$$\overline{CE}$$
 bisects $\angle DEB$.

Prove:
$$\triangle ABE \cong \triangle DCE$$

